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ABSTRACT

The Stochastic Alpha Beta Rho (SABR) is a popular stochastic volatility model for pricing interest rate 
derivatives. In contrast to local volatility models, the SABR model correctly captures the movement 
of the volatility smile. The model’s density can be approximated by the solution of a one-dimensional 
partial differential equation (pde). Solving for the density using the Crank-Nicolson discretisation results 
in loss of accuracy in  computation of European option prices. This paper proposes a non-oscillatory 
scheme for approximating the density function using an exponential time integration scheme. The 
non-oscillatory property leads to an efficient scheme for option valuation via quadrature of the density 
function. Numerical examples illustrate that European option prices can be computed with high accuracy.    

Keywords: CEV, exponential time integration, Quadrature, SABR, volatility smiles and skews

INTRODUCTION

The implied volatility surface computed by inversion of the Black-Scholes formula with respect 
to market option prices is strike and maturity dependent. Due to the inability of the constant 
volatility Black-Scholes model to fit the implied volatility surface, an important derivative 
pricing problem is the development of efficient procedures for pricing of options under a model 
with capability of fitting a volatility skew, a decreasing shape with the option’s strike price or 
under a model consistent with a smile, a u-shaped volatility profile. The constant elasticity of 
variance (CEV) process (Schroder, 1989) in which the local instantaneous volatility is a function 

of the strike price and its stochastic extension 
known as the Stochastic Alpha Beta Rho 
(SABR) model (Hagan, Kumar, Lesniewski, 
& Woodward, 2002) are two popular models 
for pricing options consistent with market 
smiles and skews.

The CEV model has the capability 
of fitting the volatility skew and has the 
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advantage that the pricing equation is one-dimensional. Efficient methods for option pricing 
under the CEV model can be found in Thakoor, Tangman, & Bhuruth (2013, 2014, 2015). The 
SABR model is one of the most widely accepted stochastic volatility model for modelling 
the smile shaped volatility surface. The model’s implied volatility approximation leads to an 
easy computation of European option prices (Hagan et al., 2002) and American option prices 
(Chang, Chung, & Stapleton, 2007). However, the asymptotic expansion formula for the 
implied volatility has two drawbacks. First, for long-maturity options with low strike prices, 
the implied volatility used to compute option prices leads to the possibility of arbitrage and 
second, at the lower boundary, there exists a boundary layer which can significantly affect the 
option price (Hagan, Kumar, Lesniewski, & Woodward, 2014).

Paulot (2015) proposed some improvements based on second-order expansions to the 
original formula but stated that for long maturities, unless a valid long maturity expansion could 
be found, a numerical method is more appropriate. A comparison of different improvements 
can be found in Oblój (2008). Andreasen & Huge (2012) proposed an arbitrage-free ‘SABR-
like’ model where the implied volatility formula converges with the Hagan formula for short 
maturities but for larger maturities, the solutions are different. Balland & Tran (2013) proposed 
a method which eliminates arbitrage in the lower strike wing by a normal volatility expansion 
with absorption at zero. An exact formula was introduced by Antonov, Konikov, & Spector 
(2013) for pricing European call options under the SABR model for the case when the Brownian 
motions of the forward price and volatility are uncorrelated. 

Then for the correlated cases, these authors showed that the SABR model parameters can 
be mapped to an uncorrelated model. This method is near-arbitrage but the pricing is slower 
than that of Hagan as for the correlated case, the mapping of the volatility parameter is strike 
dependent which makes the pricing process expensive.

The SABR model leads to a two-dimensional pde for the pricing of options. Using 
asymptotic techniques, Hagan et al. (2014) reduced the two-dimensional SABR density to a 
one-dimensional equation for the probability density of the forward price. The authors then used 
a moment preserving Crank-Nicolson scheme to approximate the density. This scheme gives 
oscillatory solutions and in the case of the CEV model, we show that the computed density is 
not accurate enough and can result in mispricing. We developed a superior alternative using 
an exponential time integrator to show that convergence is fast and the scheme produces non-
oscillatory solutions.  

An outline of this paper is as follows: First, the SABR model and Hagan’s analytical 
formula is reviewed  in section 2. In section 3, the one-dimensional SABR equation for 
the density function is derived while in section 4, the numerical discretisation for the one-
dimensional pde is provided. In section 5, numerical results for the pricing of European options 
are described to illustrate the merit of the paper’s proposed scheme. The final  section concludes 
the paper by summarising the main points.

The SABR Model

The SABR model (Hagan et al., 2002) extends the constant elasticity of variance model with 
a stochastic volatility process. In the constant elasticity of variance model, the volatility is 
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assumed to be locally constant while the SABR model allows the volatility to evolve as a 
function of time, the strike price and the forward price.

Letting αt be the volatility of the forward price Ft=S0 e(r-q)(T-t) where S0 is the initial stock 
price, r is the risk-free rate, q is the dividend yield, the SABR model is described by the system 
of stochastic differential equations

                     (1)

where  and  are two correlated Wiener processes with correlation of ρ such that

       

where ν is the constant volatility of the volatility parameter, 0 ≤ β ≤ 1 is the exponent parameter 
and Wt is a standard -Brownian motion. Choosing ν = 0 gives the CEV model for 0 ≤ β ≤ 1, 
and for β = 1 and ν = 0, we obtain the Black-Scholes model. In the SABR model, the volatility 
process is allowed to be random through the development of αt, which is scaled up by including 
the factor volatility of volatility parameter, ν. This extra randomness solves the problem of 
constant volatility, which is an unrealistic assumption of the Black-Scholes model.

Analytical Approximations under SABR

By carrying out a small volatility expansion for the singularly-perturbed SABR model given by

                     (2)

where  is the singular perturbation parameter which is eventually set to one, Hagan et 
al. (2002) showed that an analytical approximation to the implied volatility formula σB 
(E,f) is given by

                 (3)

where 
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In the case of the CEV model, the Hagan & Woodward (1999) implied volatility expression 
to first-order maturity is given by

                 (4)

where   . 

The time zero price of European options with maturity T and strike E on a forward contract 
can be expressed by Black’s formula

              

where

                        

and Φ is the cumulative distribution function of the standard normal distribution.

METHODOLOGY

The One-Dimensional Problem

By considering the singularly perturbed SABR model given by (2), Hagan et al. (2014) obtained 
a  one-dimensional  pde  for  the  probability  density  function  Q(F,t)  of the  forward  price  
on Fmin < F < Fmax given by

      .

They showed that Q(Fmin ,t) = QL (t), Q(Fmax ,t) = QR (t) and  for Fmin < F < Fmax, the  density 
Qc (F,t) is the solution of the diffusion

                   (5)

where
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with the initial condition given by 

                    

where δ is the Dirac delta function. The probability sums to one for all t, that is,

                    (6)

On differentiating (6) with respect to t and substituting (5) yields

                  (7)
 
                   (8)

at the boundaries with the initial conditions

             

For  to be martingale, we require

                   (9)

Differentiating (9) with respect to t and on evaluating the integral term, we obtain the absorbing 
boundary conditions at F = Fmin and F = Fmax given by

                  (10)

                  (11)

European call or put option prices can then be obtained by integrating the payoff against the 
terminal density

                (12)
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Given the martingale property (9) and the conservation of probability (6) the put-call parity

      Vcall -Vput = f-E,

holds exactly and thus, the computed option prices are arbitrage-free.  

New Methodology

By localising problem (5) to the finite domain (Fmin, Fmax) × [0,T], the Hagan’s scheme employs 
a  moment  preserving  Crank-Nicolson  discretisation.  To  describe  this  scheme,  consider 
for m = 0,1,…,M + 1, the intervals Im given by

       

and the uniform mesh size h = (Fmax-Fmin)/M chosen in  such  a  way  that the  initial forward 
price  f =  corresponds  exactly  to  the midpoint  of  a  cell .  Define  the cell  average  
Qm (t) = Qc (Fm,t) by

       

A central-difference discretisation in space of (5) at the interior grid points is given by

                  (13)

for m = 1,2,…,M where .

At the left boundary F = Fmin, the absorbing boundary (10) is implemented as the average of 
values on the left and right grid nodes. This gives

                 (14)

Similarly, implementing the absorbing boundary condition (11) at F = Fmax, we obtain

                (15)

Letting Δ+= (U(m+1)-Um)/h and Δ- Um= (Um-U(m-1)/h, QL (t) and QR (t) are discretised as
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Let  denote the vector of the density values at time t. Then (13), 
(14) and (15) lead to the system of odes given by

                      16)

where the matrix  is tridiagonal and the matrix  is diagonal which are 
given by

            

with

             

Then letting  denote the identity matrix and applying a Crank-Nicolson 
time stepping gives

                   (17)

for n=0,1,…N-1, with the initial condition

                       (18)

where  is a vector with 1 in the  row and zero elsewhere. At each time step, the 
values of  and  are updated as

       

Now  consider  a  put  option  with  strike E.  For E < Fmin, t he  option  price Vput = 0  and  for 
E > Fmax  the option price is given by Vput = E-f. For the case when Fmin < E < Fmax, suppose that 
E belongs to the interval  for some k0. Then, using (12), we find that 
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Evaluating the above integral gives

       

Later in this paper, we show that the Crank-Nicolson scheme yields oscillatory solutions. To 
overcome this drawback of the Crank-Nicolson time stepping, we employ an exponential time 
integration for the semi-discrete system (16). 

An exponential time integration scheme

An efficient alternative to the Crank-Nicolson scheme is an exponential time integration scheme 
(Cox & Matthews, 2002) which was first introduced in finance for option pricing in Tangman, 
Thakoor, Dookhitram, & Bhuruth (2011). Since only a single time step is required the algorithm 
can be very fast. Integrating the semi-discrete scheme (16) between 0 to T shows that

               

where  is the diagonal matrix whose   diagonal element  is given by

              

Therefore, the computed density at time T is given by

                      (20)

with the initial condition Q(0) given in (18). The left and right fluxes are then computed from

       

The matrix exponential in (20) can be computed using the ‘expm’ function in Matlab. However, 
this method uses Padé approximations which can lead to a computationally expensive algorithm 
for a large number of grid nodes. 

The matrix exponential can be more efficiently evaluated using best rational approximations 
(Trefethen, 2007) and the Carathéodory–Fejér procedure (Trefethen & Gutknecht, 1983). Let 
Υ be a Hankel contour and f be an analytic function on the neighbourhood of the negative real 
axis and consider the computation of the integral 
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Let  be a rational function, where P and Q are two polynomials of degree 
n-1 and n, that is a good approximation to ez on (-∞,0) and has poles at z1,z2,…,zη with residues 
c1,c2,…,cη. We can then obtain a good approximation to I given by

              

where  is a contour lying between (-∞,0). Expanding  in partial fractions given by

            

We obtain a quadrature formula for approximating the integral I which is given by

       

Then if  is a contour that encloses the spectrum of  , we have 

            

where  is the identity matrix. Generalising  to the matrix , a rational 
approximation to  can be obtained in terms of partial fraction expansion given by

              

The poles and residues appear in conjugate pairs since the discretisation matrix  is a real 
tridiagonal matrix, which means that only η/2 tridiagonal solves are required for computing 
the price density which makes the proposed method achieve fast convergence.

To obtain the option price at the initial forward price for different strike prices, instead of 
using (19), we implement the formula (12) as

                   (21)

where the finite integral in (21) can be obtained by using a numerical quadrature based on an 
adaptive Simpson method.

RESULTS AND DISCUSSION

We describe the results of some numerical examples for pricing European options, by first 
computing the density of the forward price. All numerical experiments have been performed 
using Matlab R2015a on a Core i5 laptop with 4GB RAM and speed 4.60 GHz. 
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Computed Black-Scholes and CEV Densities

Choosing v=0 and β=1 in (1) corresponds to the Black-Scholes model where the log-normal 
density is given by

              (22)

with  and the forward equation (5) reduces to 

       

We provide a numerical example which illustrates that the computed density using the one-
dimensional equation (5), agrees well with the theoretical density (22). For this numerical 
example, we have chosen f = 20, Fmax = 40, r = 0.09, α = 0.25 and a small maturity of T=4/12. 
The solutions computed by the Crank-Nicolson scheme (CN) and the ETD scheme (ETD) over 
the whole computational domain with M=512 spatial nodes for both methods and N=40 time 
steps for CN scheme are shown in Figure 1.

19 
 

 

Figure1. Computed CN, ETD and Exact Densities under the Black-Scholes 

Model. 

 

Table 1 shows that the density values computed by ETD are more accurate 

yielding a root mean square error (RMSE) of 10!!  while the density 

computed by CN gives a RMSE of 10!! only. 

Table 1 

Black-Scholes Density for Different 𝐹𝐹. 

𝒇𝒇 = 𝟐𝟐𝟐𝟐, 𝒓𝒓 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝑻𝑻 = 𝟒𝟒/𝟏𝟏𝟏𝟏,𝜶𝜶𝟎𝟎 = 𝟎𝟎.𝟐𝟐𝟐𝟐 

 𝑭𝑭  

 14 18 20 22 26 RMSE 

ETD 0.00111 0.12368 0.13784 0.09607 0.01782  

Figure 1. Computed CN, ETD and Exact Densities under the Black-Scholes Model

Table 1 shows that the density values computed by ETD are more accurate yielding a root 
mean square error (RMSE) of 10-8 while the density computed by CN gives a RMSE of 10-5 only.
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Choosing v = 0 in (1), gives the CEV model for 0 ≤ β ≤ 1, and the exact density function 
for the CEV model in terms of the forward price is given by

              (23)

where

            
 

and  is the modified Bessel function of the first kind of order w given by

     

For this model, the one-dimensional density pde (5) reduces to

       

where . 
In Figure 2, the exact density (23), computed CN and ETD densities are shown for the case 

when β = 0 and Table 2 gives the computed CN and ETD density values. The other parameters 
are chosen as f = 100, T = 4, r = 0 and  = 0.5.  The  numerical  example  is  performed  using 
M = 512 spatial and N = 40 time steps with Fmax = 800. A non-oscillatory and highly accurate 
density is obtained by the ETD scheme whereas the CN solution exhibits oscillations near the 
initial forward price.

Table 1 
Black-Scholes density for different F  

f = 20, r =0.09, T = 4/12, α0 = 0.25
F

14 18 20 22 26 RMSE
ETD 0.00111 0.12368 0.13784 0.09607 0.01782
Error 6.0e-9 2.1e-9 5.0e-8 6.4e-9 9.9e-9 2.3e-8
CN 0.00112 0.12368 0.13789 0.09608 0.01781
Error 6.8e-6 2.3e-7 5.3e-5 6.0e-6 1.0e-5 2.4e-5
Exact 0.00111 0.12368 0.13784 0.09607 0.01782
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Computed SABR Densities

The previous two examples demonstrated that the ETD scheme approximates the CEV and the 
Black-Scholes densities to a high degree of accuracy. The next numerical example computes the 
density function for the full SABR model with parameters (α0, β, ρ, v)=(0.35, 0.25, -0.1,1). The 
initial forward price f=1 is chosen and a maturity of T = 1 year, r = 0 and the test is performed 
with Fmax = 5, M = 512 and N = 40. Figure 3 shows the ETD solution is oscillation-free compared 
to the CN solution which exhibits oscillations near the initial forward price.

22 
 

 

Figure 2. Computed CN, ETD and Exact Densities under CEV 

 

Computed SABR Densities 
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accuracy. The next numerical example computes the density function for the 

full SABR model with parameters 𝛼𝛼!,𝛽𝛽,𝜌𝜌, 𝑣𝑣 = (0.35,0.25,−0.1,1). The 

initial forward price 𝑓𝑓 = 1 is chosen and a maturity of 𝑇𝑇 = 1 year, 𝑟𝑟 = 0 

and the test is performed with 𝐹𝐹max = 5,𝑀𝑀 = 512 and 𝑁𝑁 = 40. Figure 3 

shows the ETD solution is oscillation-free compared to the CN solution 

which exhibits oscillations near the initial forward price. 

Figure 2. Computed CN, ETD and Exact Densities under CEV

Table 2 
CEV Density for Different F and a Large Maturity 

f = 100, β = 0, r =0 ,T = 4,  = 0.5
F

70 90 100 110 130 200 400 RMSE
ETD 0.00287 0.00331 0.00345 0.00353 0.00353 0.00238 0.00004
Error 1.5e-7 1.6e-7 1.5e-7 1.4e-7 1.0e-7 6.3e-8 1.3e-8 1.2e-7
CN 0.00287 0.00300 0.00741 0.00320 0.00353 0.00238 0.00004
Error 9.6e-7 3.2e-4 3.9e-3 3.2e-4 9.7e-7 2.9e-8 2.5e-9 1.5e-3
Exact 0.00287 0.00331 0.00345 0.00353 0.00353 0.00238 0.00004
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Figure 3. CN and ETD Densities under SABR 

	

The next example compares  computed density against the analytical 

approximation for the density given in Kienitz & Wetterau (2012, p. 397). 

The SABR model parameters are chosen as 

𝛼𝛼!,𝛽𝛽,𝜌𝜌, 𝑣𝑣 = (0.4,0.5,−0.06,0.4) with an initial forward price of 

𝑓𝑓 = 40, 𝑟𝑟 = 0.05 and 𝑇𝑇 = 0.5 year. For this case, the test is performed 

using 𝐹𝐹max = 80, 𝑀𝑀 = 512 and 𝑁𝑁 = 40. From Figure 4, the same 

conclusion is reached as in the previous numerical example. 

Figure 3. CN and ETD Densities under SABR
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The next example compares  computed density against the analytical approximation for the 
density given in Kienitz & Wetterau (2012, p. 397). The SABR model parameters are chosen 
as (α0, β, ρ, v) = (0.4, 0.5, -0.06, 0.4) with an initial forward price of f = 40, r = 0.05 and T = 
0.5 year. For this case, the test is performed using Fmax = 80, M = 512 and N = 40. From Figure 
4, the same conclusion is reached as in the previous numerical example.
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Figure 4. CN, ETD and Approximate Densities under SABR 

 

The exponential time integration scheme has also been shown to suppress 

the wiggles at the strike prices for other pricing models (Rambeerich, 

Tangman, & Bhuruth, 2011). The proposed method will not produce 

oscillations whatever the choice of SABR parameters. 

 

European Option Prices 

The prices of European options can be obtained by computing the density 

function in (5). We start in a simpler case of a put option under the Black-

Scholes model for the same set of parameters as in Hull (2006) with the 

current forward price 𝑓𝑓 = 20, the exercise price 𝐸𝐸 = 20 with a risk-free 

interest rate of 𝑟𝑟 = 0.09 and the volatility of the forward price of 𝛼𝛼! =

Figure 4. CN, ETD and Approximate Densities under SABR

The exponential time integration scheme has also been shown to suppress the wiggles 
at the strike prices for other pricing models (Rambeerich, Tangman, & Bhuruth, 2011). The 
proposed method will not produce oscillations whatever the choice of SABR parameters.

European Option Prices

The prices of European options can be obtained by computing the density function in (5). 
We start in a simpler case of a put option under the Black-Scholes model for the same set of 
parameters as in Hull (2006) with the current forward price f = 20, the exercise price E = 20 
with a risk-free interest rate of r = 0.09 and the volatility of the forward price of α0 = 0.25. 
The numerical solutions arising by solving the density pde are given in Table 3. The exact 
option price is 1.11664.

Table 3 
Option prices under the Black-Scholes Model 

= 20, E = 20, r = 0.09, T = 4/12 ,α0 =0.25
1D-PDE ETD

M Price Error Rate Cpu(s)
25 1.10985 6.8e-3 - 0.064
26 1.11462 2.0e-3 1.750 0.087
27 1.11611 5.3e-4 1.937 0.108
28 1.11651 1.3e-4 1.983 0.114
29 1.11662 3.3e-5 1.994 0.124
210 1.11663 8.4e-6 1.987 0.131
Exact 1.11664146
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Consider a European call option with a high at-the-money volatility of  = 0.5, the current 
forward price as 100, an exercise price of 100 and r = 0 so that the forward price equals the 
stock price. Table 4 gives the computed prices using the ETD and the implied volatility approach 
(4) and the exact CEV formula (Schroder, 1989). Both the density approach and analytical 
approximation (4) which are denoted by HaganApprox are able to yield solutions with an error 
of 10-4 for different values of β for this small maturity problem.

Table 4 
Call option prices under the CEV Model for T=0.5

β

T = 0.5, f = 100, E = 100, r = 0,  = 0.5, M = 29

Exact Price
Hagan Approx. 1D-PDE ETD

Price Error Price Error
0 14.10474 14.10394 8.0e-4 14.10445 2.9e-4
0.3 14.06665 14.06706 4.1e-4 14.06637 2.8e-4
0.5 14.04931 14.04970 3.9e-4 14.04903 2.8e-4
0.7 14.03795 14.03813 1.8e-4 14.03747 4.8e-4

Lindsay & Brecher (2012) have priced European options under the CEV model using 
Monte Carlo simulations using the same parameters as in Table 4 for a long maturity of T = 
4 years. We use this case to show that for the CEV model, the Hagan’s approximation results 
in a loss of accuracy.

From Table 5, we observe that the price computed by the Monte-Carlo approximations 
of Lindsay & Brecher and the density approach using ETD are in good agreement with the 
exact price even for a long maturity option while the Hagan & Woodward (1999) solutions 
lose accuracy when maturity increases.

Table 5 
Call option prices under the CEV Model for T=0.5

Β

T = 4, f = 100, E = 100, r = 0,  = 0.5, M = 29

Exact Price
Hagan Approx 1D-PDE ETD Lindsay-Brecher

PricePrice Error Price Error
0 39.04516 39.75171 7.1e-1 39.04459 5.7e-4 39.04504 ± 0.05709
0.3 38.82097 39.00945 1.9e-1 38.81917 1.8e-3 38.82058 ± 0.06492
0.5 38.57528 38.65875 8.3e-2 38.57235 2.9e-3 38.57511 ± 0.07203
0.7 38.39279 38.42445 3.2e-2 38.38386 8.9e-3 38.39167 ± 0.08199

The numerical results for two special cases of the SABR model showed that the ETD 
method is more accurate than the implied volatility approach via Black’s formula. The results 
are convincing enough to claim that the ETD approach is an accurate technique that can be 
extended to the pricing of European options under the full SABR model. The author choose 
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(α, β, ρ, v) = (0.4, 0.5, -0.06, 0.4) with Fmax =80 and an initial forward price of f = 40 and 
computes the price of a European put option with strike E = 40 and maturity T = 0.5. A numerical 
example show that the proposed method also works well for the general SABR model. For 
these parameters, both the Hagan implied volatility formula (3) and the fine-tuned formula 
(Oblój, 2008) gives σB=0.063659.

Table 6 
European put option prices under the SABR Model

Steps

f = 40, E = 40, r = 0.05, α0 = 0.4, β = 0.5, ν = 0.4, ρ = -0.06, T
Monte Carlo 1D-PDE ETD

Price Error Cpu(s) M Price Error Rate Cpu(s)
1000 0.70649 5.9e-3 8.729 27 0.69723 3.3e-3 - 0.101
100000 0.70132 7.9e-4 591.3 28 0.69963 8.9e-4 1.874 0.120

29 0.70028 2.4e-4 1.886 0.131
210 0.70045 7.1e-5 1.896 0.152
211 0.70050 1.9e-5 1.744 0.169
212 0.70051 4.9e-6 1.887 0.197

Hagan’s Approx = 0.70052,     Oblój’sApprox = 0.70052

Table 6 gives computed option prices using the density method and Monte Carlo 
simulations with104 and105 runs. The ETD requires 131 milliseconds to obtain a solution with 
an error of 10-4 while the Monte Carlo simulations require around 591 seconds. This shows 
that the proposed method is faster than existing methods and yields accurate prices.

CONCLUSION

A non-oscillatory scheme for computing a one-dimensional approximation of the SABR density 
was proposed. Numerical examples showed that option prices are computed to high accuracy. 
The methodology can be extended to the pricing of path dependent options such as barrier 
options and American options.
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